Header.png

The GASPOROX technology is based on optical spectroscopy using low-power diode laser. The gas is sensed by sending laser light through the sample, probing the gas content without any change of the sample. The gas can for example be located in a headspace of a package, inside porous materials or in gas cavities inside the human body. 

GASPOROX Technology

Each molecule absorbs light in a unique way, allowing detection of them using laser absorption spectroscopy. GASPOROX utilizes low-power diode lasers in the near infrared to measure species such as gaseous oxygen, carbon dioxide and water vapour. The technique is a well-documented laser spectroscopic technique called TDLAS, Tunable Diode Laser Absorption Spectroscopy, where the wavelength of the laser is tuned across one of the absorption lines of a gas, while the change in intensity of the light emerging after some distance of travel through the gas is monitored. The gas concentration can then be extracted from this information.

GASPOROX is holder of a unique version of the TDLAS technology allowing sensing of gas embedded inside various materials. This special TDLAS technology was first published in 2001, and is referred to as GASMAS, GAs in Scattering Media Absorption Spectroscopy, and was invented by researchers at the Lund University. The GASMAS technology is unique in that the method applies TDLAS for determination of gases inside pores and cavities surrounded by light scattering media.

GASPOROX are experts in the TDLAS technology to the focus areas food, packaging, material analysis and medical diagnostics. The samples can range from transparent containers to samples only allowing a minor fraction of the light to pass.

 
Header.png

Applications

Packaging

GASPOROX technology can measure the concentration of gas inside package headspace.
The packages can be trays, bottles, bags, and be made of materials such as plastic, foil, carton and paper.

 
Packaging.png
 

Food

The free gas seated inside food products can be measured with GASPOROX laser technology. The gas can be located in pores inside for example bread, fruits or meat. The measurement can be used to study ripeness, respiration and gas content.

 
Food.png
 

Material Analysis

By sensing the gas inside porous samples, material parameters can be obtained using GASPOROX laser technology. Examples of possible obtained parameters are porosity, dampness and gas diffusion.

 
Material Analysis.png
 

Medical Diagnosis

With the laser technology it is possible to measure the free gas located inside the human body. This can be used as medical diagnosis of sinusitis, otitis and monitor lung function of premature born babies.
For more information Please see Here.

 
Medical Diagonsis.png
 
 

 

GASMAS Scientific Publications

 

(Updated May 2014)

1. M. Sjöholm, G. Somesfalean, J. Alnis, S. Andersson-Engels, and S. Svanberg, Analysis of Gas Dispersed in Scattering Solids and Liquids, Opt. Lett. 26, 16 (2001).
2. G. Somesfalean, M. Sjöholm, J. Alnis, C. af Klinteberg, S. Andersson-Engels, and S. Svanberg, Concentration Measurement of Gas Imbedded in Scattering Media Employing Time and Spatially Resolved Techniques, Appl. Optics 41, 3538 (2002).
3. S. Svanberg, Electromagnetic Radiation in Scattering Media – Spectroscopic Aspects, Progress in Nonlinear Science, Vol. II, Ed. A.G. Litvak, Univ. of Nizhny Novgorod, N. Novgorod, 429 (2002).
4. J. Alnis, B. Anderson, M. Sjöholm, G. Somesfalean, and S. Svanberg, Laser Spectroscopy on Free Molecular Oxygen Dispersed in Wood Materials, Appl. Phys. B 77, 691 (2003).
5. L. Persson, K. Svanberg, and S. Svanberg, On the Potential for Human Sinus Cavity Diagnostics Using Diode Laser Gas Spectroscopy, Appl. Phys. B 82, 313 (2006).
6. M. Andersson, L. Persson, M. Sjöholm, and S. Svanberg, Spectroscopic Studies of Wood-Drying Processes, Optics Express 14, 3641 (2006).
7. L. Persson, H. Gao, M. Sjöholm, and S. Svanberg, Diode Laser Absorption Spectroscopy for Studies of Gas Exchange in Fruits, Lasers Opt. Engineering 44, 687 (2006).
8. L. Persson, E. Kristensson, L. Simonsson, and S. Svanberg, Monte Carlo Simulations of Optical Human Sinusitis Diagnostics, J. Biomedical Optics 12 (2007).
9. L. Persson, M. Andersson, T. Svensson, K. Svanberg, and S. Svanberg, Non-Intrusive Optical Study of Gas and its Exchange  in Human Maxillary Sinuses, SPIE 6628 (2007).
10. L. Persson, M. Andersson, F. Andersson, and S. Svanberg, Approach to Optical Interference Fringe Reduction in Diode-Laser-Based Absorption Spectroscopy, Appl. Phys. B 87, 523 (2007).
11. L. Persson, M. Andersson, M. Cassel-Engquist, K. Svanberg, and S. Svanberg, Gas Monitoring in Human Sinuses using Tunable Diode Laser Spectroscopy, J. Biomed. Optics 12, 2028 (2007).
12. T. Svensson, L. Persson, M. Andersson, S. Svanberg, S. Andersson-Engels, J. Johansson, and S. Folestad, Noninvasive Characterization of Pharmaceutical Solids by Diode Laser Oxygen Spectroscopy, Appl. Spectr. 61, 784 (2007).
13. M. Andersson, L. Persson, T. Svensson, and S. Svanberg, Flexible Lock-In Detection System Based on Synchronized Computer Plug-In Boards Applied in Sensitive Gas Spectroscopy, Rev. Sci. Instr. 78 (2007).
14. L. Persson, M. Andersson, F. Andersson, and S. Svanberg, Approach to Optical Interference Fringe Reduction in Diode-Laser-Based Absorption Spectroscopy, Appl. Phys. B 87, 523 (2007).
15. L. Persson, M. Andersson, M. Cassel-Engquist, K. Svanberg, and S. Svanberg, Gas Monitoring in Human Sinuses Using Tunable Diode Laser Spectroscopy, J. Biomed. Optics 12, 2028 (2007).
16. T. Svensson, M. Andersson, L. Rippe, S. Svanberg, S. Andersson-Engels, J. Johansson, and S. Folestad, VCSEL-Based Oxygen Spectroscopy for Structural Analysis of Pharmaceutical Solids, Appl. Phys. B 90, 345 (2008).
17. M. Lewander, Z. Guan, L. Persson, A. Olsson, and S. Svanberg, Food Monitoring Based on Diode Laser Gas Spectroscopy, Appl. Phys. B 93, 619 (2008).
18. S. Svanberg, Gas in Scattering Media Absorption Spectroscopy – GASMAS, Proc. SPIE 7142 (2008).
19. L. Persson, M. Lewander, M. Andersson, K. Svanberg, and S. Svanberg, Simultaneous Detection of Molecular Oxygen and Water Vapor in the Tissue Optical Window Using Tunable Diode Laser Spectroscopy, Applied Optics 47, 2028 (2008).
20. M. Lewander, Z. Guan, K. Svanberg, S. Svanberg, and T. Svensson, Clinical System for Non-Invasive In Situ Monitoring of Gases in the Human Paranasal Sinuses, Optics Express 13 (2009).
21. S. Svanberg, Gas in Scattering Media Absorption Spectroscopy – Laser Spectroscopy in Unconventional Environments, in Laser Spectroscopy, Proc. 19th International Conference on Laser Spectroscopy (World Scientific, Singapore 2009) p. 285-292 (2009).
22. S. Lindberg, M. Lewander, T. Svensson, Z. Guan, R. Siemund, K. Svanberg, and S. Svanberg, Method for Studying Gas Composition in the Human Mastoid Using Laser Spectroscopy, Otolaryngology – Head and Neck Surgery 141, 92 (2009).
23. T. Svensson, M. Lewander, and S. Svanberg, Laser Absorption Spectroscopy of Water Vapor Confined in Nanoporous Alumina: Wall Collision Line Broadening and Gas Diffusion Dynamics, Optics Express 18 (2010).
24. S. Svanberg, Optical Analysis of Trapped Gas – Gas in Scattering Media Absorption Spectroscopy, Laser Physics 20, 68 (2010).
25. M. Lewander, T. Svensson, S. Svanberg, and A. Olsson, Non Intrusive Measurements of Food and Packaging Quality, Packaging Technology and Science 24, 271 (2011).
26. M. Lewander, S. Lindberg, T. Svensson, R. Siemund, K. Svanberg, and S. Svanberg, Clinical Study Assessing Information on the Maxillary and Frontal Sinuses Using Diode Laser Gas Spectroscopy, Rhinology 50, 26 (2011).
27. T. Svensson, E. Adolfsson, M. Lewander, C.T. Xu, and S. Svanberg, Disordered, Strongly Scattering Porous Materials as Miniature Multipass Gas Cells, Phys. Rev. Lett. 107 (2011).
28. X.T. Lou, C.T. Xu, S. Svanberg, and G. Somesfalean, Multi-Mode Diode Laser Correlation Spectroscopy Using Gas-Filled Porous Materials for Pathlength Enhancement, Applied Physics B (2011).
29. M. Lewander, A. Bruzelius, S. Svanberg, K. Svanberg, and V. Fellman, Non-Intrusive Gas Monitoring in Neonatal Lungs Using Diode Laser Spectroscopy: Feasibility Study, J. Biomed. Opt. 16 (2011).
30. C.T. Xu, M. Lewander, S. Andersson-Engels, E. Adolfsson, T. Svensson, and S. Svanberg, Wall Collision Line Broadening at Reduced Pressures: Towards Non-Destructive Characterization of Nanoporous Materials, Phys. Rev. A 84 (2011).
31. M. Lewander, P. Lundin, T. Svensson, S. Svanberg, and A. Olsson, Non-Intrusive Measurements of Headspace Gas Composition in Liquid Food Packages Made of Translucent Materials, Packag. Technol. Sci. 24, 271 (2011).
32. L. Mei, H. Jayaweera, P. Lundin, S. Svanberg, and G. Somesfalean, Gas Spectroscopy and Optical Path-Length Assessment in Scattering Media Using a Frequency-Modulated Continuous-Wave Diode Laser, Opt. Lett. 36, 3036 (2011).
33. U. Tylewicz, P. Lundin, L. Cocola, K. Dymek, P. Rocculi, S. Svanberg, P. Dejmek, and F. Gόmez Galindo, Gas in Scattering Media Absorption Spectroscopy (GASMAS) Detected Persistent Vacuum in Apple Tissue After Vacuum Impregnation, Food Biophysics, Vol. 7 (2012).
34. P. Lundin, L. Cocola, A. Olsson, and S. Svanberg, Non-Intrusive Headspace Gas Measurements by Laser Spectroscopy — Performance Validation by an Intrusive Reference Sensor, J. Food Eng. (2012).
35. S. Lindberg, M. Lewander, T. Svensson, R. Siemund, K. Svanberg, and S. Svanberg, Method for Studying Gas Composition in the Human Mastoid Cavity by Use of Laser Spectroscopy, Annals of Otology, Rhinology & Laryngology 121, 217 (2012).
36. P. Lundin, E. Krite Svanberg, L. Cocola, M. Lewander, S. Andersson-Engels, J. Jahr, V. Fellman, K. Svanberg, and S. Svanberg, Non-Invasive Gas Monitoring in Newborn Infants Using Diode Laser Absorption Spectroscopy: A Case Study, Proc. SPIE 8229 (Bellingham, Wa) 2012.
37. L. Mei, S. Svanberg, and G. Somesfalean, Combined Optical Porosimetry and Gas Absorption Spectroscopy in Gas-Filled Porous Media Using Diode-Laser-Based Frequency Domain Photon Migration, Opt. Express 20 (2012).
38. L. Mei, J. Larsson, S. Svanberg, and G. Somesfalean, Optical Porosimetry in Wood Using Oxygen Absorption Spectroscopy and Frequency Domain Photon Migration, Asia Communications and Photonics Conference AS1E.5 (2012).
39. T. Svensson, E. Adolfsson, M. Burresi, R. Savo, C.T. Xu, D.S. Wiersma, and S. Svanberg, Pore Size Assessment Based on Wall Collision Broadening of Spectral Lines of Confined Gas: Experiments on Strongly Scattering Nanoporous Ceramics with Fine-Tuned Pore Sizes, Appl. Phys. B. 110 (2013).
40. S. Svanberg, Gas in Scattering Media Absorption Spectroscopy – from Basic Studies to Biomedical Applications, Lasers and Photonics Reviews, Vol. 7 (2013).
41. P. Lundin, L. Mei, S. Andersson-Engels, and S. Svanberg, Laser Spectroscopic Gas Concentration Measurements in Situations with Unknown Optical Path Length Enabled by Absorption Line Shape Analysis, Appl. Phys. Lett. 103 (2013).
42. I. Bargigia, A. Nevin, A. Farina, A. Pifferi, C. D’Andrea, M. Karlsson, P. Lundin, G. Somesfalean, and S. Svanberg, Diffuse Optical Techniques Applied to Wood Characterisation, J. Near. Infrared Spec. 21, 259 (2013).
43. L. Mei, G. Somesfalean, and S. Svanberg, Light Propagation in Porous Ceramics: Optical Properties and Porosity Studies Using Tunable Diode Laser Spectroscopy, Appl. Phys. A 114, 393 (2013).
44. P. Lundin, E. Krite Svanberg, L. Cocola, M. Lewander Xu, G. Somesfalean, S. Andersson-Engels, J. Jahr, V. Fellman, K. Svanberg, and S. Svanberg, Noninvasive Monitoring of Gas in the Lungs and Intestines of Newborn Infants Using Diode Lasers: Feasibility Study, J. Biomed. Opt. 18 (2013).